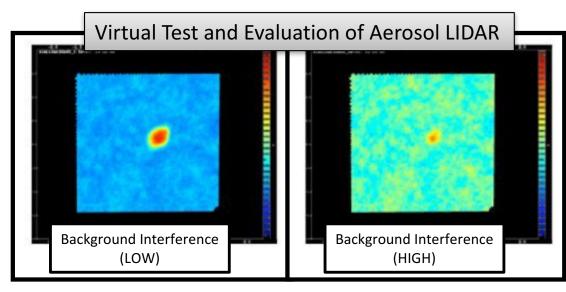
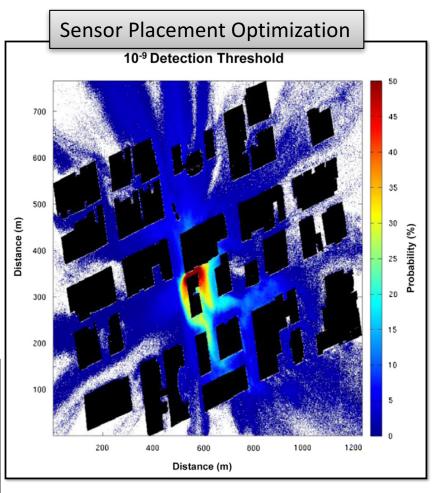
UNCLASSIFIED

Modeling and Simulation in Support of Chemical and Biological Defense Analysis

George Bieberbach, Paul E. Bieringer, and Aaron J. Piña

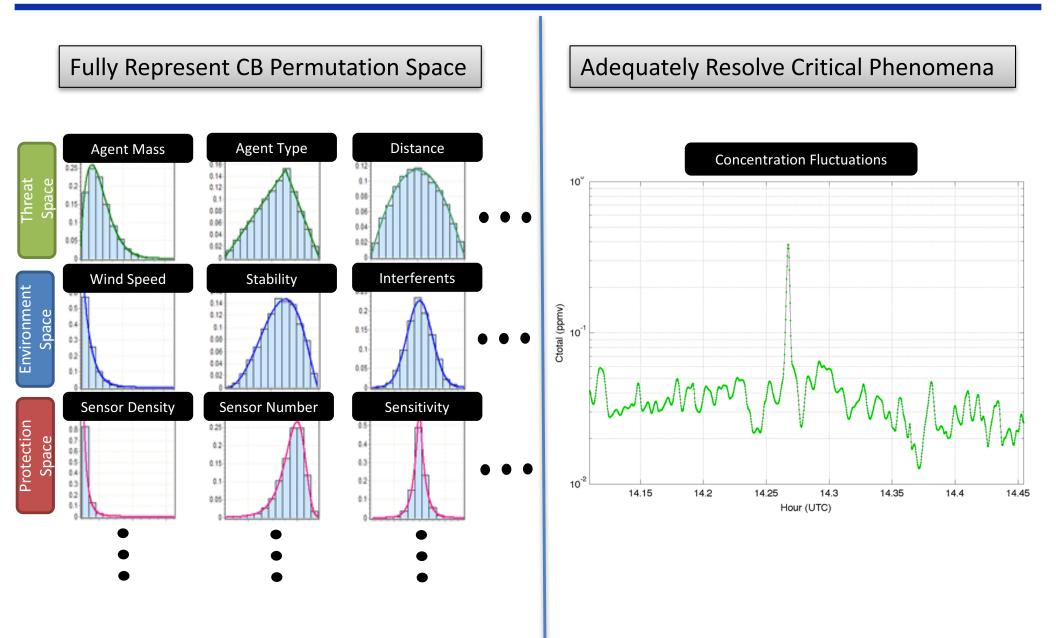
Aeris LLC


Atmospheric Science and Engineering Solutions


November 30, 2017

Modeling and Simulation (M&S) Applications

- Chemical and Biological (CB) Asset Performance Analysis
- CB Asset Operational Optimization
- Critical Infrastructure Protection
 Design
- Strategic CB Scenario Risk Assessment



UNCLASSIFIED

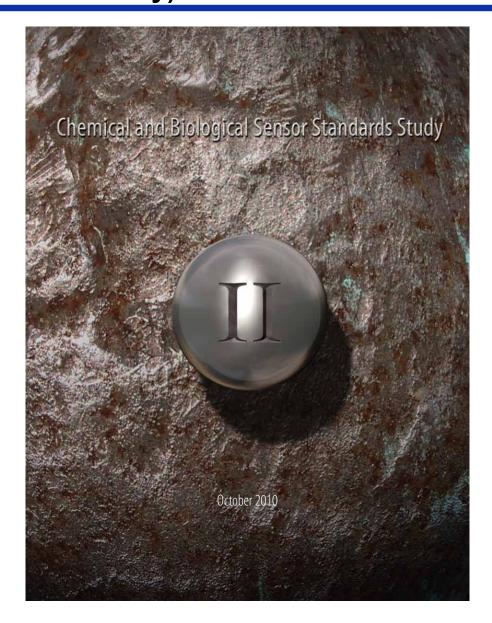
Material Source: Bieberbach (2005) Bieringer et al (2013)

Elements of A Robust CB Defense M&S Analysis

UNCLASSIFIED

Outline

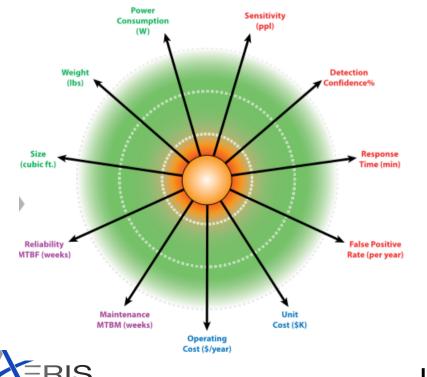
- Elements of a robust CB Defense (CBD) analysis
 - Fully represent permutation space
 - Adequately resolve critical phenomena
- Enabling technologies and methods for improving CBD analysis robustness
 - Environmental data reduction via Self Organizing Maps (SOMs)
 - Graphics Processing Unit (GPU) accelerated High Performance Computing (HPC)
- Summary and conclusions

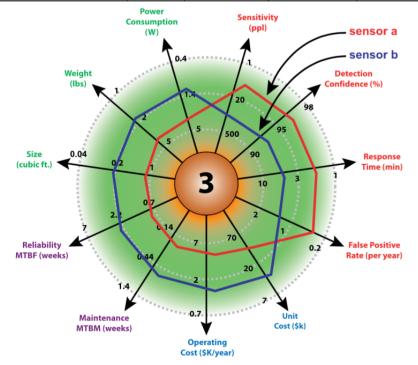

Outline

- Elements of a robust CB Defense (CBD) analysis
 - Fully represent permutation space
 - Adequately resolve critical phenomena
- Enabling technologies and methods for improving CBD analysis robustness
 - Environmental data reduction via Self Organizing Maps (SOMs)
 - Graphics Processing Unit (GPU) accelerated High Performance Computing (HPC)
- Summary and conclusions

Representing Permutation Space (CB Sensor Standards Study)

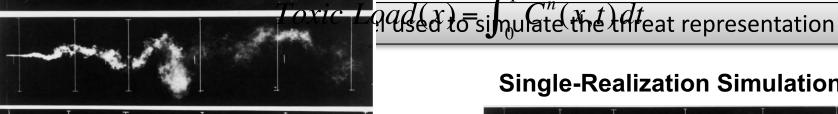
- General CB sensor requirements study performed by Carrano and Jeys (2004, 2010)
- Attempted to identify key sensor performance requirements based on operationally relevant CB attack scenarios.

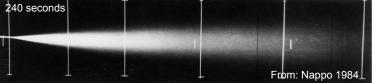



Representing Permutation Space

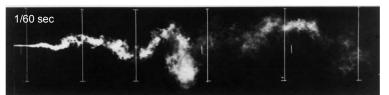
(Multi-parametric Methodology)

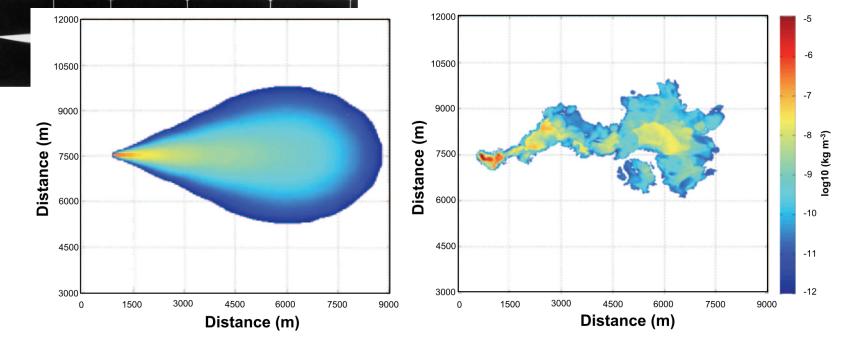
- For each attack scenario, sensor requirements were derived based on a range of threat, environmental, and protection permutations.
- Results distilled into spider charts


,	Scenario	Agent	Sensor Sensitivity	Sensor Reaction Time (minutes)	Sensor Spacing (m)
1	Convoy Movement	Anthrax	1 – 500 ppl	1 – 10	50 – 500
2	Convoy Movement	Sarin	0.1 – 10 mg/m ³	1 – 10	50 – 100
3	Ground Forces Defense	Anthrax	1 – 500 ppl	1 – 10	50 – 100
4	Military Building (internal attack)	Smallpox	0.1 – 100 ppl	1 – 1	One per air duct
5	Military Building (external attack)	TIC	0.5 – 500 mg/m³	0.1 – 1	One on roof
6	Amphibious Operation	Mustard	0.1 – 1 mg/m ³	1 – 30	500 - 100
7	OCONUS Forward Airbase	VX	0.01 – 2 mg/m ³	0 – 3	25 – 100
8	Terrain Denial	VX	0.1 - 10 mg/m ³	0 – 3	1 sensor per lead vehicle
9	CONUS Military Post	Anthrax	0.1 – 1 ppl	0 – 10	50 – 100
10	CONUS Military Post	Anthrax	0.1 – 25 ppl	1 – 7	500 – 1,000
11	Defensive Positions	Sarin	0.1 – 2 mg/m ³	1-6	500 – 1,000
12	Defensive Positions	Anthrax	0.1 – 10 ppl	0-2	500 – 1,000
13	Naval Port Facility	Anthrax	1 – 500 ppl	0 – 7	10 sensors on perimeter
14	Navy Ship in Littoral	Plague	1 – 500 ppl	0 – 0.25	10 sensors on deck



Material Source: Carrano and Jeys, (2004, 2010)


Penrosenting Permutation Space


ly Limitations/Challenges)

Single-Realization Simulation

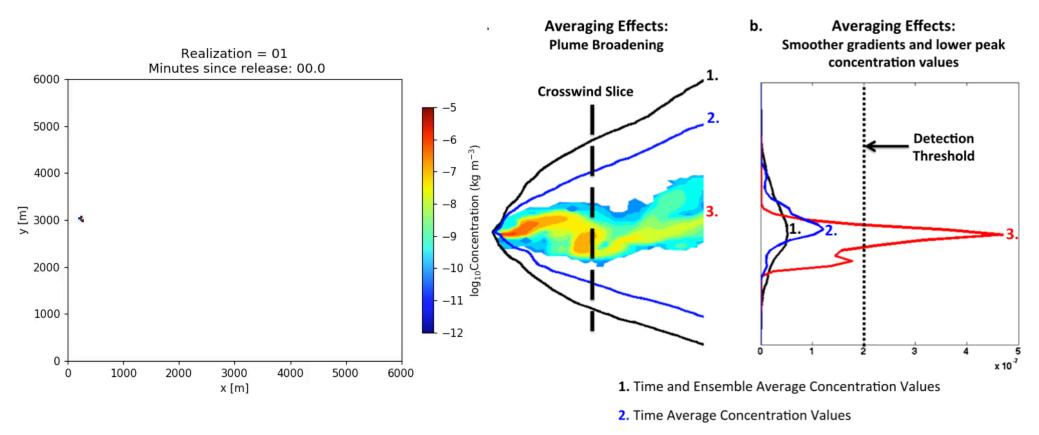
Continuous Release at 1450s After Initial Release

Representing Permutation Space

(CB Standard Study Limitations/Challenges)

CBD analysis examples where ensemble average models may not be appropriate

- Sampling/response rates significantly exceed temporal fidelity of the simulation
- When the application relies on spatial/temporal correlations
 - Multi-sensor/location false alarm mitigation
 - Sensor network design
 - Standoff or remote detection
- When the application involves a non-linear transformation of CBRN concentration


	BIERINGI		139		
		n versus Ensemble-Average Atmo l and Biological Defense Analyses			
PAUL E. BIERINGER AND ANDREW J. ANNUNZIO					
Research Applications Laboratory, National Center for Atmospheric Research,* Boulder, Colorado					
	NATHA	N PLATT			
	Institute for Defense Ana	lysis, Alexandria, Virginia			
	GEORGE B	IEBERBACH			
Research Appl	ications Laboratory, National Cen	ter for Atmospheric Research, Boulder, Colorado			
	John H	Iannan			
	Defense Threat Reduction A	gency, Fort Belvoir, Virginia			
	(Manuscript received 12 June 20	013, in final form 2 January 2014)			
	ABST	RACT			
models traditionally (AT&D). While the is not appropriate t analyses require A' averaging periods th a turbulent atmosph analyses when one c	y describe the statistical properties statistical representation of AT& to use this class of dispersion mode I&D models that are capable of s at more closely emulate a "single ie tere. The latter class of AT&D mode or more of the following factors are	the defense-system analysis process. These numeric so (CB-agent atmospheric transport and dispersis D is appropriate to use in some CB defense analyses simulating dispersion properties with very short tim realization" of a contaminant or CB agent dispersing led is susperior to the former for performing CB-syste important in the analysis; high-frequency sampling in the contaminant concentration field, and nonline	on , it em he- ; in em of		
operations perform modeling tools and AT&D is advantage	ed on the contaminant concentrat provides specific examples in whice eous over using the statistical, "er	tion. This paper describes and contrasts these AT& h utilizing ensembles of single realizations of CB-age ssemble-average" representation of the agent AT& ng an AT&D modeling tool that is appropriate f	ED ent D.		
operations perform modeling tools and AT&D is advantag These examples de the analysis.	ed on the contaminant concentra provides specific examples in whic sous over using the statistical, "er monstrate the importance of usi	tion. This paper describes and contrasts these AT& hutližing ensembles of single realizations of CB-age semble-average" representation of the agent AT& ng an AT&D modeling tool that is appropriate f	2D ent D. for nt of Defens ogies designe		
operations perform modeling tools and AT&D is advantag These examples de the analysis.	ed on the contaminant concentra provides specific examples in whic eous over using the statistical, "er monstrate the importance of usi the importance of usi the specific examples of the specific examples of the specific examples of the specific examples of the specific ith the use of chemical and	tion. This paper describes and contrasts these AT& hutilizing ensembles of single realizations of CB-age semble-average" representation of the agent AT& ing an AT&D modeling tool that is appropriate f combat these threats, the U.S. Departmee makes significant investments in technolo for CB-agent detection and defeat. CB do analysis is a critical element in the defen quisition process that includes identifying gaps, determining technology investment	2D ent D. for nt of Defens ogies designe efense-syster isse-system ac ng technolog direction, an		
operations perform modeling tools and AT&D is advantag. These examples de the analysis. 1. Introduction In recent decades the me livery methods associated w biological (CB) agents hav 	ed on the contaminant concentra provides specific examples in whic eous over using the statistical, "er monstrate the importance of usi atterials of concern and de- ith the use of chemical and e continued to evolve. To sospheric Research is sponsored on.	tion. This paper describes and contrasts these AT& huilizing ensembles of single realizations of CB-age usemble-average" representation of the agent AT& ng an AT&D modeling tool that is appropriate f combat these threats, the U.S. Departme: makes significant investments in technolo for CB-agent detection and defeat. CB d analysis is a critical element in the defen quisition ar critical element in the defent providing information that ultimately d acquisition and deployment decisions. V of live agents is the most advantageous	D ent D. for nt of Defens gies designe efense-syster isse-system at ng technolog direction, an lirects syster approach fo		
operations perform modeling tools and AT&D is advantag. These examples de the analysis. 1. Introduction In recent decades the me livery methods associated w biological (CB) agents hav 	ed on the contaminant concertra provides specific examples in whic cous over using the statistical, "er monstrate the importance of usi therials of concern and de- ith the use of chemical and e continued to evolve. To conspheric Research is sponsored on.	tion. This paper describes and contrasts these AT& hullizing ensembles of single realizations of CB-age semble-average" representation of the agent AT& ng an AT&D modeling tool that is appropriate f combat these threats, the U.S. Departmee makes significant investments in technolo for CB-agent detection and defeat. CB da analysis is a critical element in the defen quisition process that includes identifyin gaps, determining technology investment + providing information that ultimately d acquisition and deployment decisions. V	D ent D, for for signed setsigner efense-system sise-system aug g technolog g technolog direction, an irrects syster While the us approach fc , their use allants are fre cetion effor		

Representing Permutation Space

(CB Standard Study Limitations/Challenges)

Not properly resolving the physics may lead to incorrect analysis conclusions

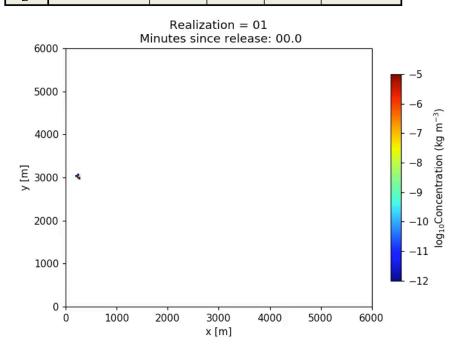
3. Instantaneous Concentration Values

Outline

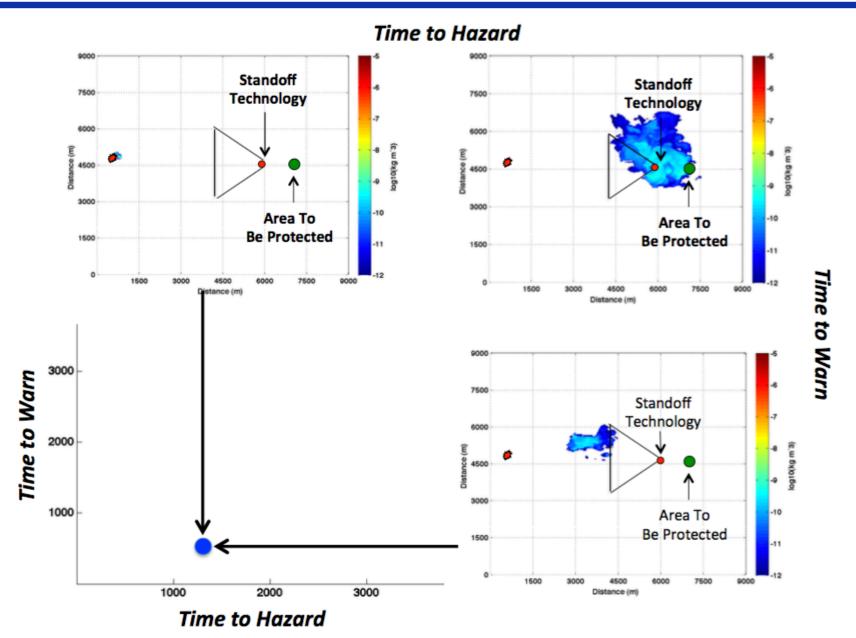
- Elements of a robust CB Defense (CBD) analysis
 - Fully represent permutation space
 - Adequately resolve critical phenomena
- Enabling technologies and methods for improving CBD analysis robustness
 - Environmental data reduction via Self Organizing Maps (SOMs)
 - Graphics Processing Unit (GPU) accelerated High Performance Computing (HPC)
- Summary and conclusions

(Standoff CB Detector Analysis of Alternatives)

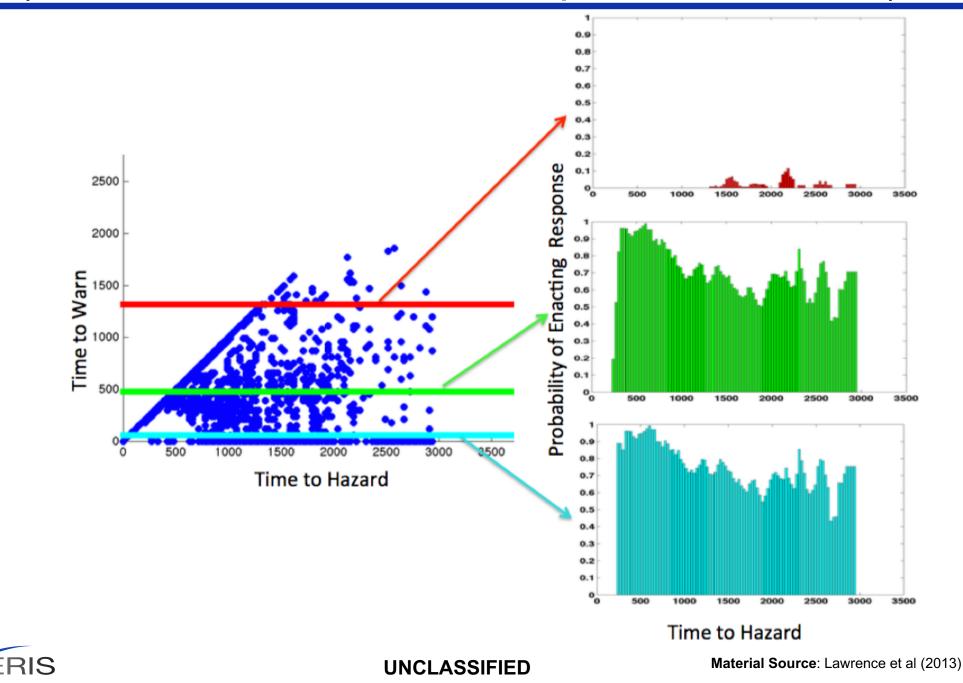
- Standoff CB sensor analysis of alternatives study performed by Lawrence et al (2013)
- Attempted to examine value of different standoff sensor technologies and potential enhancements to those technologies for providing a detect-to-warn application.


UNCLASSIFIED		
Project Repo CB		
Scientific Evalua Standoff Det	ntion of Techno ection of Chem Biological	ical and
	W.G. Lawrence E.C. Wack F.D. D D.C. Jamrog A.J J.C. Biddle P.E H.W. Lau S.E. Holster G. I C.J. Smith	
		4 June 2013
Lincoln Labora Massachusetts institute of ti Lexington, Massachusetts	ECHNOLOGY	4 June 2013
MASSACHUSETTS INSTITUTE OF T	ECHNOLOGY	atory must have prior ogram Manager. I without prior written

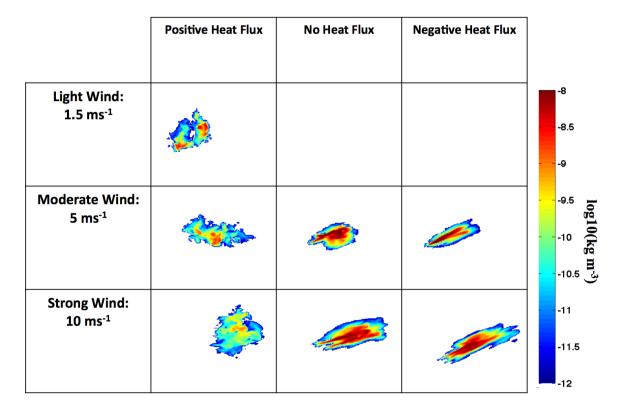
(Large Eddy Simulation Dispersion Methodology)


- Leveraged metrics, scenarios, and lessons learned from CB Standards Study (Carrano and Jeys 2004, 2010).
- Utilized Large Eddy Simulation (LES) based dispersion model to simulate the CB threats
 - Generated multiple realizations of threat for each scenario and meteorological condition
- Utilized a variety of detailed standoff sensor models

	Scenario	Attack Type	Agent	Release Type	Delivery Mechanism
	Ground Forces Defense (on move but stopped)	Chemical/ Biological	Sarin, VX, Anthrax	Single point	Stationary sprayer
	Defensive Positions (on move but stopped)	Chemical/ Biological	Anthrax, VX	Multiple Point	Artillery
Fixed Site	Military Post	Biological	Anthrax	Line	Truck with sprayer
	Convoy Movement	Chemical/ Biological	Sarin, VX, Anthrax	Single Point	Stationary sprayer
Maneuver	Convoy Movement	Chemical	Sarin, VX	Multiple Point	Artillery



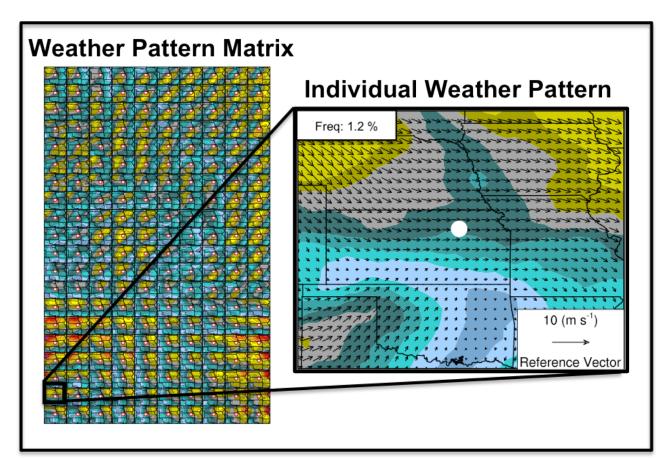
(Allowed Correlations and Peak Concentrations To Be Properly Resolved)


(Enabled Probabilistic Assessment of Operational Effectiveness)

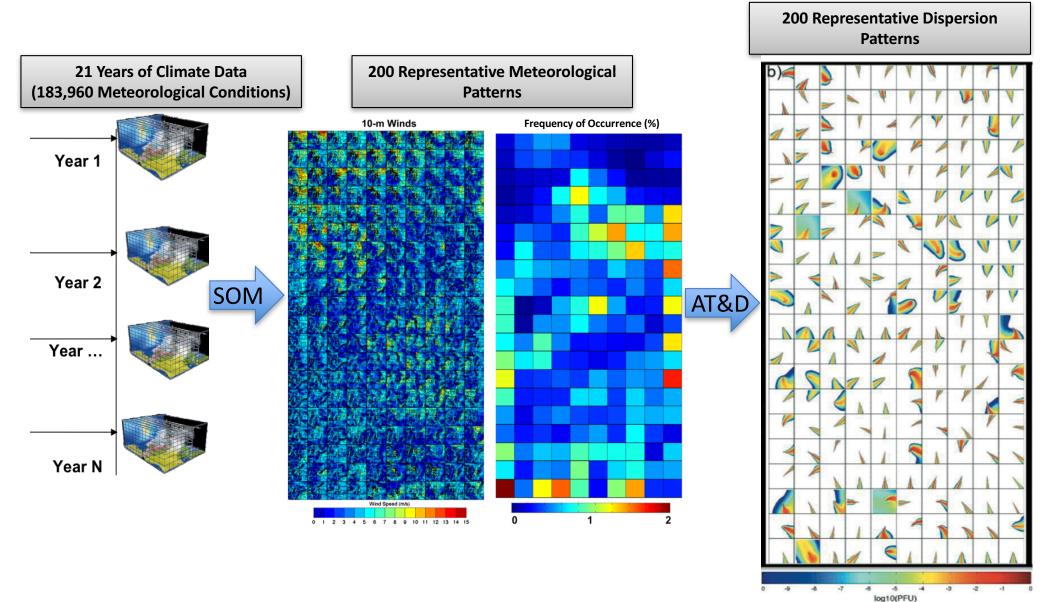
(CB Standoff Study Challenges/Limitations)

Study limited to a small set of environmental conditions

- LES model simulations were very computationally expensive
- Required over 6 months of non-stop simulation time on large CPU based High Performance Computing (HPC) resources
- Generated 10s of TBs data, which was then analyzed/interrogated over an additional 6 month period


Outline

- Elements of a robust CB Defense (CBD) analysis
 - Fully represent permutation space
 - Adequately resolve critical phenomena
- Enabling technologies and methods for improving CBD analysis robustness
 - Environmental data reduction via Self Organizing Maps (SOMs)
 - Graphics Processing Unit (GPU) accelerated High Performance Computing (HPC)
- Summary and conclusions


Enabling Technologies (Environmental Data Reduction via Self Organizing Map)

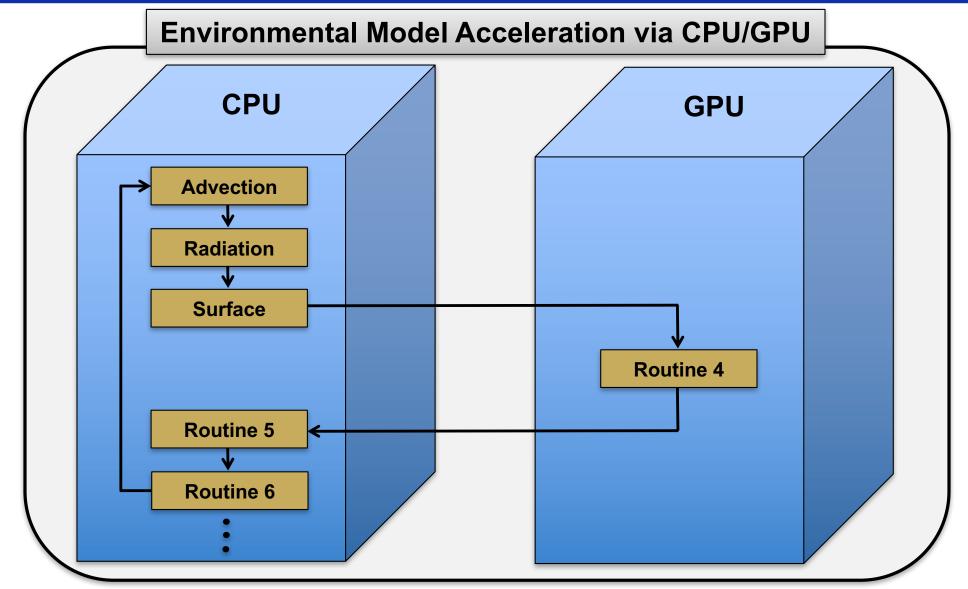
- The SOM is a neural network pattern recognition and classification algorithm (Kohonen 1990)
- Utilized by the atmospheric science community to distill large amounts of atmospheric data into a small set of characteristic patterns.

(Environmental Data Reduction via Self Organizing Map)

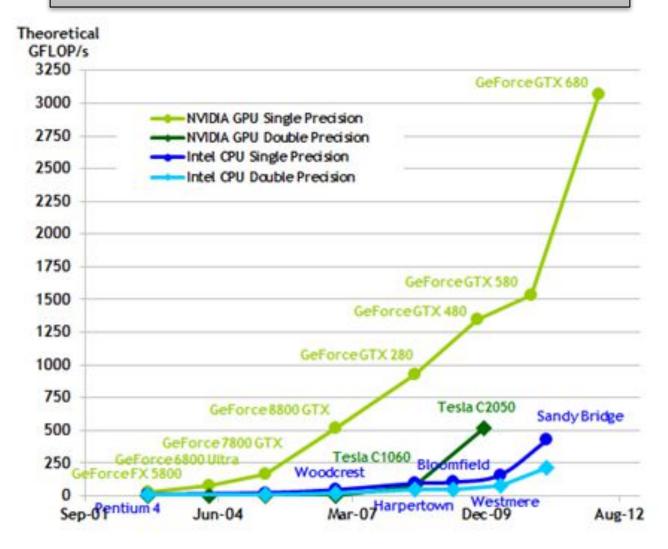


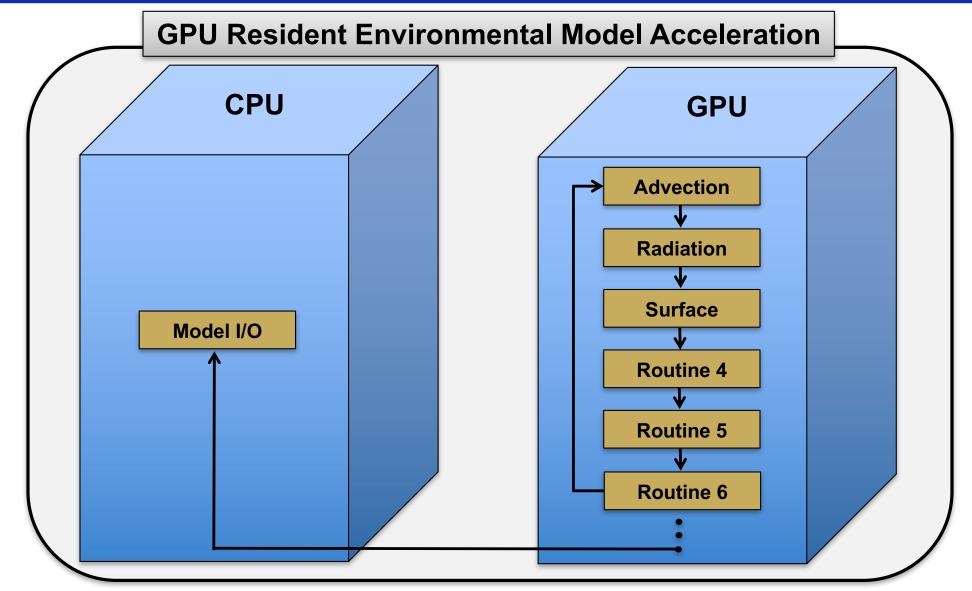
Outline

- Elements of a robust CB Defense (CBD) analysis
 - Fully represent permutation space
 - Adequately resolve critical phenomena
- Enabling technologies and methods for improving CBD analysis robustness
 - Environmental data reduction via Self Organizing Maps (SOMs)
 - Graphics Processing Unit (GPU) accelerated High Performance Computing (HPC)
- Summary and conclusions

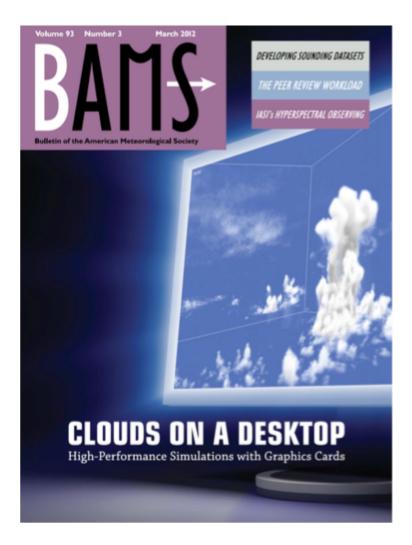

(Graphics Processing Unit Accelerated HPC Computing)

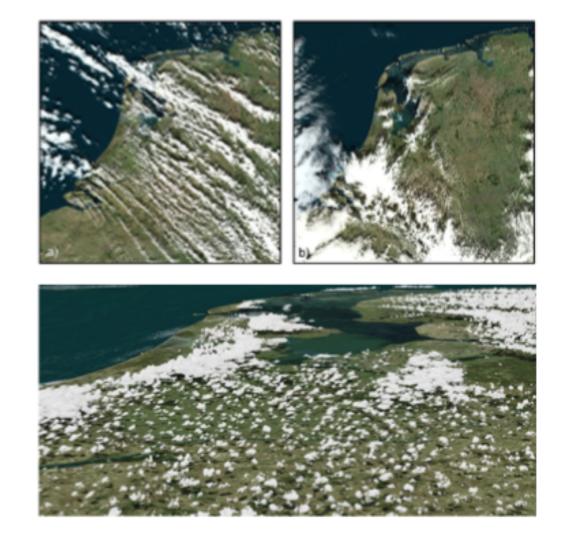
- CPU is optimized to perform sequential operations
 - Multiple ALU's (cores) enable some parallel performance
 - Typically has a large cache memory availability compared to GPU
- GPU is optimized to perform highly parallel operations
 - Numerous ALU's (1000's on a single GPU card)
 - Faster and more advanced memory interfaces
- Primary challenge is refactoring of CPU based model codes to optimize utilization on GPU


(Graphics Processing Unit Accelerated HPC Computing)


(Graphics Processing Unit Accelerated HPC Computing)

GPU Technology has continued to rapidly advance in terms of both Floating Point Operations per second (FLOP/s) and size/speed of the available fast access memory (Cache)

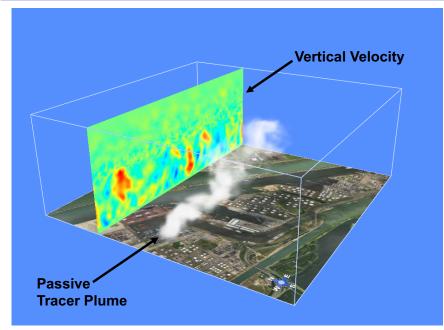


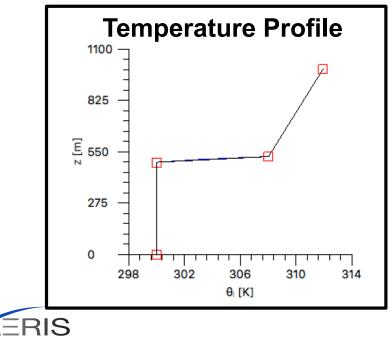

(Graphics Processing Unit Accelerated HPC Computing)

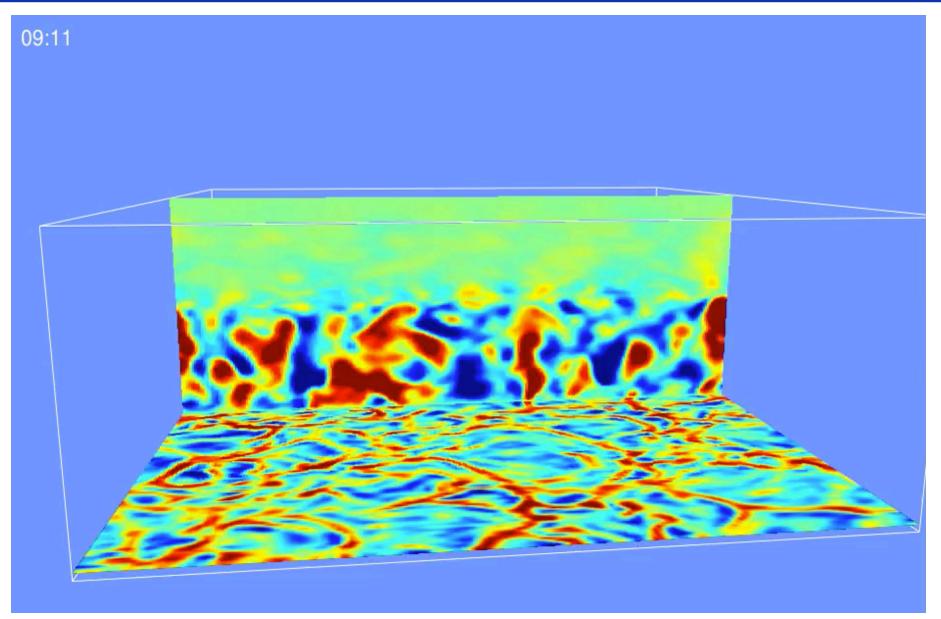
Enabling Technologies (GPU Resident Atmospheric Simulation Program (GRASP))

UNCLASSIFIED

Material Source: Schalkwijk et al. BAMS 2012 Schalkwijk et al. BAMS 2015


(GPU Resident Atmospheric Simulation Program (GRASP))


AT&D capability recently added to allow generation of dispersion realizations in a fraction of the time, as compared to traditional CPU based LES solution


Enabling Technology (GRASP AT&D Rural Simulation Demonstration)

- Simulation specifications
 - 128 x 128 x 64 grid
 - Horizontal resolution: 20 m
 - Vertical resolution ~17 m
 - 1-hr simulation
- Performance on CPU based system (8-core Xenon): 5,520 seconds (~ 1.5 hours)
- Performance on NVIDIA K40 GPU Card: 36 seconds

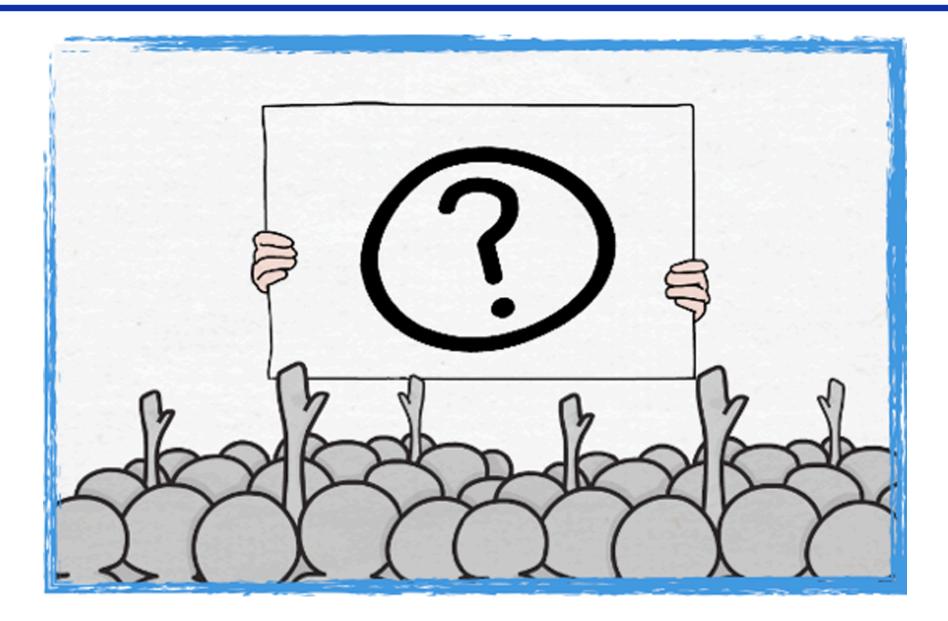
Enabling Technology (GRASP AT&D Rural Simulation Demonstration)

Outline

- Elements of a robust CB Defense (CBD) analysis
 - Fully represent permutation space
 - Adequately resolve critical phenomena
- Enabling technologies and methods for improving CBD analysis robustness
 - Environmental data reduction via Self Organizing Maps (SOMs)
 - Graphics Processing Unit (GPU) accelerated High Performance Computing (HPC)

Summary and conclusions

Summary and Conclusions


- A robust M&S methodology should attempt to:
 - Incorporate full distribution of possible cases/inputs, including associated probabilities/likelihoods.
 - Utilize models which adequately resolve critical phenomenon.
- The ability to meet these requirements is historically limited by:
 - Time and funds allocated to complete the analysis
 - Current state of methods, technologies, and computational resources available to perform the analysis
- Various emerging technologies hold promise to better meet these analysis goals:
 - Environmental data reduction methods such as the Self Organizing Map (SOM) are a useful tool for reducing the input dimensionality, while retaining the associated probability distributions.
 - GPU model optimization is becoming an effective means to accelerate more sophisticated computationally expensive M&S codes, making their utilization more feasible for CBD analysis studies.

References

- Bieberbach, G., P.E. Bieringer, S. Longmore, J. Copeland, and D. Rife, 2012: Aerosol Fate and Transport (Plume) Modeling. Volume I, National Bio and Agro-Defense Facility Updated Site-Specific Biosafety and Biosecurity Mitigation Risk Assessment, Department of Homeland Security, Science and Technology Directorate, 237-322
- Bieberbach, G, N. Oien, S. Mayor, R. Frehlich, and R.S. Sheu, 2005: Determining the Effectiveness of Aerosol LIDAR for Biological Attack Characterization and Verification, 9th Annual George Mason University Conference on Atmospheric Transport and Dispersion Modeling.
- Bieringer, P.E., S. Longmore, G. Bieberbach, L.M. Rodriguez, J. Copeland, and J. Hannan, 2013: A method for targeting air samplers for facility monitoring in an urban environment. *Atmos. Environ.*, **80**, 1-12.
- Bieringer, P.E., A.J. Annunzio, N. Platt, G. Bieberbach, J. Hannan, 2014: Contrasting the use of single- realization versus ensemble-average atmospheric dispersion solutions for chemical and biological defense analyses. *J. Appl. Meteor. Climatol.*, **53**, 1399–1415.
- Carrano, J., and T. Jeys, 2004: Chemical and Biological Sensor Standards Study I. *Defense Threat Reduction Agency*, 76 pp
- Carrano, J., and T. Jeys, 2010: Chemical and Biological Sensor Standards Study II. *Defense Threat Reduction* Agency, 76 pp
- Kohonen, T., 1990: The self-organizing map. *Proc. IEEE* 78, **9**, 1464-1480.
- Lawrence, W.G., E.C. Wack, D.C. Jamrog, J.C. Biddle, H.W. Lau, S.E. Holster, C.J. Smith, A.K. Goyal, F.D. D'Arcangelo, A.J. Annunzio, P.E. Bieringer, R. Cabell, and G. Bieberbach, 2013: Scientific evaluation of technology for standoff detection of chemical and biological agents., MITLL Project Report No. CB-3, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA.
- Nappo, C.J. 1984: Turbulence and Dispersion Parameters Derived From Smoke-Plume Photoanalysis, *Atmos. Environ.*, **18**, 299 306.
- Schalkwijk J., E.J. Griffith, F.H. Post, and H.J. Jonker, 2012: High-Performance Simulations of Turbulent Clouds on a Desktop PC: Exploiting the GPU, *BAMS*, March 2012.
- Schalkwijk J., H.J. Jonker, A.P. Siebesma, and E.V. Meijgaard, 2015: Weather Forecasting Using GPU-Based Large-Eddy Simulations, *BAMS*, May 2015.
- Frontiers.org (http://www.frontiersin.org/files/Articles/70265/fgene-04-00266-HTML/image_m/fgene-04-00266-g001.jpg)

